Acta Cryst. (1989). C45, 626-628

Conformation and Structure of (1R,6'R)- and (1S,6'S)-3-Iodo-2,2-dimethyl-1-[6'-(3'-methyl-1'-oxocyclohex-2'-enylpropyl]] p-Nitrobenzoate*

BY KATHRYN M. CORBIN, MARC H. LYNN, BRUCE A. BARNER AND DEREK J. HODGSON[†] Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA

(Received 28 June 1988; accepted 18 October 1988)

Abstract. $C_{19}H_{22}INO_5$, M_r =470.9, monoclinic, $P2_1/n$, a = 6.682 (1), b = 22.635 (3), c = 13.316 (2) Å, $\beta =$ 97.46 (1)°, V = 1997.1 (5) Å³, Z = 4, $D_x = 1.566$, D_m (flotation in $CCl_4/CH_2Cl_2)=1.55$ (2) Mg m⁻³, Mo Ka radiation ($\lambda Ka_1 = 0.70926$ Å, $\lambda Ka_2 = 0.71354$ Å), $\mu =$ 1.583 mm⁻¹, F(000) = 944, T = 295 K, R = 0.0436, wR = 0.0452 for 1886 data. The configurations at the two asymmetric centers are both S (or both R), there being an equal distribution of SS and RR forms in this centrosymmetric cell. The cyclohexenone ring is a very flattened half-chair, and approximates well an envelope conformation with five atoms coplanar and one out of the plane.

Introduction. The generation of carbon asymmetry in carbon-carbon bond forming reactions has emerged as a fundamental cornerstone of modern synthetic organic chemistry and continues to be the subject of intense research and application. In this capacity, the aldol addition reaction has attracted extensive investigation in efforts to elucidate important control elements responsible for simple diastereoselection in the concomitant formation of two adjacent centers of carbon asymmetry. Exhaustive studies have documented aspects of stereochemical control in addition reactions of aldehydes and ketones with metal enolates and silvl enol ethers derived from saturated ketones (Heathcock, 1984). However, little information has appeared addressing the analogous process using α_{β} -unsaturated ketone kinetic enolates (Stork, Kraus & Garcia, 1974) or the corresponding dienylsilyl ethers (Brown, Campbell, Taylor & Zhang, 1987). We therefore set out to investigate the degree of diastereoselection in the TiCl₄-catalyzed crossed-aldol addition reaction of dienylsilyl ethers with aldehydes to ascertain the control effects, if any, the double bond imparts upon stereoselectivity.

Initial studies have focused upon a series of sixmembered cyclic enones owing to the geometric homogeneity of the corresponding *E*-enolsilanes, an

* 3-Iodo-2,2-dimethyl-1-(4-methyl-2-oxo-3-cyclohexen-1-yl)propyl *p*-nitrobenzoate.

0108-2701/89/040626-03\$03.00

important consideration in aldol chemistry (Heathcock, 1984; Evans, 1984). TiCl₄-mediated reaction of the dienylsilyl ethers with a series of aldehydes provided good yields of the addition products, which were analyzed for direction and degree of diastereoselectivity by ¹H NMR spectroscopy. In most cases studied, erythro/threo assignment of the major isomer produced was readily elucidated from vicinal proton coupling constants and correlation with known magnitudes in saturated systems $(J_{H-1,6'})$. However, the reaction of the dienylsilane derived from 3-methyl-2-cyclohexenone and 2-iodomethyl-2-methylpropanal provided a 78:22 mixture of isomers, the vicinal coupling constants of which were identical. A crystalline derivative (p-nitrobenzoate) of the major aldol product was therefore prepared, to discern the sense of diastereoselectivity in this example.

Experimental. Colorless needles from ethyl acetate/ hexane (90:10) solution at room temperature. Crystal $0.8 \times 0.2 \times 0.1$ mm. Nicolet R3m/V diffractometer. Systematic absences h0l for (h+l) odd, 0k0 for k odd. Cell constants by least squares using 34 reflections with $20 < 2\theta(Mo) < 25^{\circ}$ measured on the diffractometer. Intensity data collected using θ scans. 4623 unique reflections, $2\theta < 55^{\circ}$, $0 \le h \le 9$, $0 \le k \le 30$, $-18 \le l \le 18$. Lorentz-polarization and absorption corrections applied. No systematic fluctuations in 193, 333, 1, 10, $\overline{4}$, 361 measured at the beginning and after every 100 reflections (53 times). Programs from SHELXTL-PLUS (Sheldrick, 1987).

The position of the iodine atom was located from a three-dimensional Patterson function, the remaining non-hydrogen atoms being located in a subsequent difference Fourier map. Isotropic refinement (on F) of all 26 non-hydrogen atoms gave R = 0.102. Subsequent anisotropic refinement gave R = 0.053. All 22 hydrogen atoms were located in a difference Fourier synthesis. The final cycle of least squares involved anisotropic refinement of non-hydrogen atoms and isotropic refinement of hydrogen atoms; weights $1/[\sigma^2(F) + gF^2]$, g refined to 0.00043 (1). Final cycle gave R = 0.0436, wR = 0.0452, S = 1.237 using 1886 observations with $F > 5\sigma(F)$ and 323 variables. No

© 1989 International Union of Crystallography

[†]Author to whom correspondence should be addressed.

Table	1.	Atomic	coordinat	es (×	104)	and	equiva	lent
is	otr	opic dis	placement	param	eters	(Å ²)	× 10 ³)	

	x	v	z	Ueo*
I	9214 (1)	-843(1)	8158(1)	74(1)
O(1)	8280 (8)	-2900 (3)	7371 (5)	79 (3)
O(2)	12596 (6)	-1783(2)	6783 (3)	45 (2)
O(3)	9843 (8)	-1801 (3)	5608 (4)	65 (2)
O(4)	17864 (11)	-211(3)	3624 (6)	111 (3)
O(5)	15099 (10)	138 (3)	2881 (5)	91 (3)
N	16033 (13)	-187 (3)	3495 (5)	69 (3)
C(3)	12221 (13)	-1199 (4)	8580 (7)	58 (3)
C(2)	12396 (10)	-1878 (3)	8548 (5)	44 (2)
C(5)	14667 (13)	-2009 (5)	8792 (8)	62 (4)
C(4)	11194 (17)	-2160 (4)	9339 (7)	61 (4)
C(1)	11563 (11)	-2120 (3)	7499 (5)	42 (3)
C(6′)	11858 (10)	-2781 (3)	7346 (5)	42 (2)
C(1′)	9838 (12)	-3100 (3)	7129 (5)	51 (3)
C(2')	9862 (14)	3684 (3)	6637 (6)	55 (3)
C(3′)	11523 (14)	-3929 (3)	6354 (6)	61 (3)
C(10)	11500 (25)	-4530 (5)	5894 (10)	88 (5)
C(4′)	13492 (13)	-3614 (4)	6502 (8)	63 (3)
C(5′)	13243 (13)	-2950 (4)	6581 (7)	54 (3)
C(13)	11562 (12)	-1648 (3)	5872 (5)	46 (3)
C(14)	12821 (11)	-1298 (3)	5249 (5)	43 (3)
C(15)	11810 (13)	-1003 (4)	4418 (6)	63 (3)
C(16)	12871 (14)	-638 (4)	3835 (7)	66 (3)
C(17)	14904 (13)	-586 (3)	4095 (6)	54 (3)
C(18)	15945 (13)	-887 (4)	4888 (6)	66 (3)
C(19)	14877 (13)	1244 (4)	5473 (6)	56 (3)

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

evidence for extinction. Final difference Fourier map contained no peak higher than $0.46 \text{ e} \text{ Å}^{-3}$. $(\Delta/\sigma)_{\text{max}}$ = 0.018. Atomic scattering factors taken from *International Tables for X-ray Crystallography* (1974).

Discussion. The positional parameters, along with their standard deviations as estimated from the inverse least-squares matrix, are presented in Table 1.* The geometry of a single molecule of the title compound is depicted in Fig. 1.

The structure consists of monomeric units which are well separated from each other. In the absence of any potential donor, there is no hydrogen bonding in the structure. The principal bond lengths and bond angles in the structure are given in Table 2. The C(3)–I bond length of 2.171 (8) Å is normal (Singh & Hodgson, 1974), as are the other distances in the structure. The bond lengths in the cyclohexenone ring show the expected pattern of five nominally single bonds of lengths 1.477 (1) to 1.524 (10) Å [average 1.50 (2) Å] and one [C(2')–C(3')] nominally double bond of 1.338 (11) Å. As expected, the substituted phenyl ring is planar, with an average deviation of less than 0.009 Å from the six-atom mean plane. The conformation of the cyclohexenone ring is always of interest. Robinson and co-workers have demonstrated that highly substituted cyclohexen-2-ones adopt a flattened half-chair conformation (Hartshorn, Martyn, Robinson & Vaughan, 1986), with atoms C(1'), C(2'), C(3') and C(4') in a plane and C(6') and C(5')approximately equally disposed above and below the plane. In the present case the degree of flattening is extreme. If the ring is viewed as a flattened half-chair, the in-plane atoms C(1'), C(2'), C(3') and C(4') form

Fig. 1. View of a single molecule of the compound. Hydrogen atoms are omitted for clarity. The molecule shown here is the (1S, 6'S) enantiomer, but in this centrosymmetric crystal there are an equal number of (1R, 6'R) forms.

Table 2. Bond lengths (Å) and angles (°)

I-C(3)	2.171 (8)	O(1) - C(1')	1.216 (8)
O(2)-C(1)	1-461 (8)	O(2) - C(13)	1.350 (8)
O(3) - C(13)	1.208 (8)	O(4)N	1.214 (8)
O(5)-N	1.210 (8)	N-C(17)	1.477 (10)
C(3) - C(2)	1.541 (10)	C(2) - C(5)	1.539 (11)
C(2)–C(4)	1.544 (10)	C(2) - C(1)	1.535 (9)
C(1) - C(6')	1.527 (9)	C(6') - C(1')	1.524 (10)
C(6')-C(5')	1.511 (10)	C(1')-C(2')	1.477 (10)
C(2')–C(3')	1.338 (11)	C(3')-C(10)	1.491 (12)
C(3')–C(4')	1-488 (11)	C(4')–C(5')	1-518 (11)
C(13)–C(14)	1.486 (9)	C(14)–C(15)	1.390 (10)
C(14)–C(19)	1.373 (10)	C(15)-C(16)	1.390 (11)
C(16)-C(17)	1.363 (11)	C(17)–C(18)	1.368 (11)
C(18)–C(19)	1.383 (10)		
C(13) = O(2) = C(1)	118-3 (5)	O(5) - N - O(4)	123.0 (8)
C(17) - N - O(4)	118-1 (7)	C(17) - N - O(5)	118-8 (8)
C(2) - C(3) - I	115.8 (5)	C(5)-C(2)-C(3)	105-2 (6)
C(4) - C(2) - C(3)	110-2(7)	C(4) - C(2) - C(5)	111.2 (7)
C(1) - C(2) - C(3)	111-1 (6)	C(1) - C(2) - C(5)	110.8 (6)
C(1) - C(2) - C(4)	108-3 (6)	C(2) - C(1) - O(2)	105.2 (5)
C(6') - C(1) - O(2)	110.1(6)	C(6') - C(1) - C(2)	115.6 (6)
C(1') - C(6') - C(1)	111-3 (6)	C(5') - C(6') - C(1)) 116-0 (6)
C(5') - C(6') - C(1')	110-9 (6)	C(6') - C(1') - O(1)) 122.7 (7)
C(2') = C(1') = O(1)	120-6 (7)	C(2') - C(1') - C(6')	(7) 116-6 (7)
C(3') = C(2') = C(1')	123.6(7)	C(10) - C(3') - C(2')	(2) 122.0(9)
C(4') = C(3') = C(2')	121.0(7)	C(4') = C(3') = C(1')	0) 117-0 (9)
$C(3^{\circ}) = C(4^{\circ}) = C(3^{\circ})$	112.4 (7)	C(4') = C(5') = C(6')	(1) 112.3(7)
O(3) = C(13) = O(2)	123.0 (0)	C(14) - C(13) - O(14)	2) 111·2 (6)
C(14) - C(13) - O(3)	$125 \cdot 2(7)$	C(15) - C(14) - C(14)	13) 110 (7)
C(19) - C(14) - C(13)	$123 \cdot 3(7)$	C(19) - C(14) - C(14	15) 119.9(/)
C(10) - C(13) - C(14)	+) 120.0(8)	C(17) = C(10) = C(10)	13) 118-2 (8)
C(10) - C(17) - N	118.5(7)	C(18) - C(17) - N	118-6 (8)
C(18) - C(17) - C(16)	122.9(8)	C(19)-C(18)-C(17) 118-5 (8)
U(18)-U(19)-U(14)	+) 120-4(8)		

^{*} Lists of structure amplitudes, H-atom positional parameters and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51513 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 2. The stereochemistry at the asymmetric centers C(1) and C(6').

an excellent plane (maximum deviation 0.005 Å), with C(5') lying 0.570 Å out of the plane. Atom C(6'), however, sits only 0.075 Å above this four-atom plane. Alternatively, if we view the ring as an envelope conformation we calculate a plane through the five atoms C(6'), C(1'), C(2'), C(3') and C(4'); the maximum deviation from this plane is 0.022 Å, and C(5') lies 0.617 Å below the plane.

Our principal interest in the title compound is in the configuration at the asymmetric carbon centers C(1)and C(6'), since we were unsure with which diastereomer we were dealing. The geometry at C(1) and C(6') is

shown in Fig. 2. As can be seen in that figure, the configuration in the molecule shown is C(1)S, C(6')S; naturally, in this centrosymmetric crystal there are an equal number of the enantiomeric C(1)R, C(6')Rspecies, but no other diastereomers.

KMC gratefully acknowledges the receipt of a Kuehn fellowship from the University of Wyoming and the E. R. Schierz Award from the Wyoming Section of the American Chemical Society. BAB acknowledges the support of the American Cancer Society through grant No. IN-160A.

References

- BROWN, D. W., CAMPBELL, M. M., TAYLOR, A. P. & ZHANG, X. (1987). Tetrahedron Lett. 28, 985.
- EVANS, D. A. (1984). In Asymmetric Synthesis, edited by J. D. MORRISON, Vol. 3, pp. 1-110. New York: Academic Press.
- HARTSHORN, M. P., MARTYN, R. J., ROBINSON, W. T. & VAUGHAN, J. (1986). Aust. J. Chem. 39, 1609-1620.
- HEATHCOCK, C. H. (1984). In Asymmetric Synthesis, edited by J. D. MORRISON, Vol. 3, pp. 112-212. New York: Academic Press.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- SHELDRICK, G. M. (1987). SHELXTL-PLUS Crystallographic System, version 2. Nicolet XRD Corporation, Madison, Wisconsin, USA.
- SINGH, P. & HODGSON, D. J. (1974). Acta Cryst. B30, 828-830.
- STORK, G., KRAUS, G. A. & GARCIA, G. A. (1974). J. Org. Chem. **39**, 3459.

Acta Cryst. (1989). C45, 628-632

Structure of Elsinochrome A: a Perylenequinone Metabolite

BY STEFANO V. MEILLE, LUCIANA MALPEZZI, GIUSEPPE ALLEGRA AND GIANLUCA NASINI

Dipartimento di Chimica e Centro di Studio del CNR per le Sostanze Organiche Naturali, Politecnico di Milano, Piazza Leonardo da Vinci 32, I- 20133 Milano, Italy

AND ULRICH WEISS

Laboratory of Chemical Physics, National Institutes of Health, Bethesda, Maryland 20892, USA

(Received 3 October 1988; accepted 21 October 1988)

Abstract. trans-1,2-Diacetyl-1,2-dihydro-5,10-dihydroxy-3,7,8,12-tetramethoxybenzo[ghi]perylene-4,11-dione, $C_{30}H_{24}O_{10}$, $M_r = 544.51$, orthorhombic, D_m (by flotation) = 1.48 g cm⁻³, λ (Mo Ka) = 0.71069 Å, $\mu = 1.057 \text{ cm}^{-1}$, F(000) = 1136, T = 293 K. R = 0.046 (2065 observed reflections). Elsinochrome A is shown to exist in the solid state as a nonplanar quinone tautomer; the pigment adopts a helical conformation, in analogy with the related cercosporin, but the pervlenequinone moiety in elsinochrome A appears to be significantly less skewed.

Introduction. Perylenequinones form a group of chemically interesting biologically active (especially photosensitizing) pigments obtainable from natural sources (Weiss, Merlini & Nasini, 1987); almost all the

0108-2701/89/040628-05\$03.00

© 1989 International Union of Crystallography